Fatigue Proof Steel: Properties and Key Applications (2025)

Table Of Content

Table Of Content

Fatigue Proof Steel is a specialized grade of steel designed to withstand cyclic loading and fatigue stresses, making it particularly valuable in applications where durability and reliability are paramount. This steel is classified as a medium-carbon alloy steel, typically containing alloying elements such as manganese, chromium, and nickel, which enhance its mechanical properties and fatigue resistance.

Comprehensive Overview

Fatigue Proof Steel is engineered to provide exceptional performance under repetitive loading conditions. Its primary alloying elements include:

  • Manganese (Mn): Improves hardenability and tensile strength.
  • Chromium (Cr): Enhances corrosion resistance and hardenability.
  • Nickel (Ni): Increases toughness and impact resistance.

These elements contribute to the steel's ability to endure high-stress environments without succumbing to fatigue failure.

Key Characteristics:
- High fatigue strength
- Excellent toughness
- Good wear resistance
- Enhanced machinability

Advantages:
- Durability: Its resistance to fatigue makes it ideal for components subjected to cyclic loads, such as gears and shafts.
- Versatility: Suitable for various applications across industries, including automotive and aerospace.
- Cost-Effectiveness: Offers a balance of performance and affordability compared to higher alloy steels.

Limitations:
- Corrosion Resistance: While improved, it may not perform as well as stainless steels in highly corrosive environments.
- Weldability: Requires careful consideration during welding to avoid cracking.

Historically, Fatigue Proof Steel has been significant in the development of high-performance machinery and components, establishing itself as a reliable choice in engineering applications.

Alternative Names, Standards, and Equivalents

Standard OrganizationDesignation/GradeCountry/Region of OriginNotes/Remarks
UNS1541USAClosest equivalent to AISI 4140
AISI/SAE4140USAMinor compositional differences
ASTMA829USAUsed for structural applications
EN42CrMo4EuropeSimilar properties, commonly used in Europe
JISSCM440JapanComparable grade with slight differences in alloying elements

The table above highlights various standards and equivalent grades. Notably, while AISI 4140 and 42CrMo4 share similar properties, the specific heat treatment processes and mechanical properties may vary, affecting their performance in specific applications.

Key Properties

Chemical Composition

Element (Symbol and Name)Percentage Range (%)
C (Carbon)0.38 - 0.43
Mn (Manganese)0.60 - 0.90
Cr (Chromium)0.80 - 1.10
Ni (Nickel)0.25 - 0.50
Si (Silicon)0.15 - 0.40
P (Phosphorus)≤ 0.035
S (Sulfur)≤ 0.040

The primary role of key alloying elements in Fatigue Proof Steel includes:
- Carbon: Increases hardness and strength through heat treatment.
- Manganese: Enhances hardenability and improves wear resistance.
- Chromium: Provides corrosion resistance and contributes to overall toughness.
- Nickel: Improves ductility and impact strength, particularly at low temperatures.

Mechanical Properties

PropertyCondition/TemperTest TemperatureTypical Value/Range (Metric)Typical Value/Range (Imperial)Reference Standard for Test Method
Tensile StrengthQuenched & TemperedRoom Temp850 - 1000 MPa123 - 145 ksiASTM E8
Yield Strength (0.2% offset)Quenched & TemperedRoom Temp600 - 800 MPa87 - 116 ksiASTM E8
ElongationQuenched & TemperedRoom Temp15 - 20%15 - 20%ASTM E8
Hardness (HRC)Quenched & TemperedRoom Temp28 - 34 HRC28 - 34 HRCASTM E18
Impact StrengthCharpy V-notch-20 °C30 - 50 J22 - 37 ft-lbfASTM E23

The combination of these mechanical properties makes Fatigue Proof Steel suitable for applications requiring high strength and toughness, particularly in dynamic loading conditions. Its high tensile and yield strengths, coupled with good ductility, allow it to perform reliably in structural applications.

Physical Properties

PropertyCondition/TemperatureValue (Metric)Value (Imperial)
DensityRoom Temp7.85 g/cm³0.284 lb/in³
Melting Point-1425 - 1540 °C2600 - 2800 °F
Thermal ConductivityRoom Temp45 W/m·K31 BTU·in/h·ft²·°F
Specific Heat CapacityRoom Temp460 J/kg·K0.11 BTU/lb·°F
Electrical ResistivityRoom Temp0.00065 Ω·m0.00038 Ω·in

Key physical properties such as density and thermal conductivity are crucial in applications where weight and heat dissipation are factors. The relatively high density contributes to the material's strength, while its thermal conductivity ensures effective heat management in high-performance environments.

Corrosion Resistance

Corrosive AgentConcentration (%)Temperature (°C/°F)Resistance RatingNotes
Chlorides3-520-60 °C / 68-140 °FFairRisk of pitting
Sulfuric Acid10-2025 °C / 77 °FPoorNot recommended
Sodium Hydroxide5-1020-60 °C / 68-140 °FFairSusceptible to stress corrosion cracking

Fatigue Proof Steel exhibits moderate resistance to various corrosive agents. While it performs adequately in environments with low chloride concentrations, it is susceptible to pitting and stress corrosion cracking in more aggressive conditions. Compared to stainless steels, such as AISI 304, which offer superior corrosion resistance, Fatigue Proof Steel is less suitable for applications in highly corrosive environments.

Heat Resistance

Property/LimitTemperature (°C)Temperature (°F)Remarks
Max Continuous Service Temp300 °C572 °FSuitable for prolonged exposure
Max Intermittent Service Temp400 °C752 °FShort-term exposure
Scaling Temperature600 °C1112 °FRisk of oxidation beyond this limit

At elevated temperatures, Fatigue Proof Steel maintains its mechanical properties up to a certain limit. Beyond the maximum continuous service temperature, the risk of oxidation and loss of mechanical integrity increases. This steel is not recommended for applications involving prolonged exposure to high temperatures.

Fabrication Properties

Weldability

Welding ProcessRecommended Filler Metal (AWS Classification)Typical Shielding Gas/FluxNotes
MIGER70S-6Argon + CO2Preheat recommended
TIGER70S-2ArgonRequires post-weld heat treatment

Fatigue Proof Steel can be welded using common processes like MIG and TIG. However, preheating is often necessary to prevent cracking, especially in thicker sections. Post-weld heat treatment can further enhance the properties of the weldment.

Machinability

Machining ParameterFatigue Proof SteelAISI 1212Notes/Tips
Relative Machinability Index60100Moderate machinability
Typical Cutting Speed (Turning)40 m/min60 m/minUse carbide tools for best results

Fatigue Proof Steel exhibits moderate machinability. Optimal cutting speeds and tooling should be employed to achieve desired surface finishes and tolerances.

Formability

Fatigue Proof Steel demonstrates good formability, suitable for both cold and hot forming processes. However, care must be taken to avoid excessive work hardening, which can lead to cracking during bending operations. Recommended bend radii should be adhered to for optimal results.

Heat Treatment

Treatment ProcessTemperature Range (°C/°F)Typical Soaking TimeCooling MethodPrimary Purpose / Expected Result
Annealing600 - 700 °C / 1112 - 1292 °F1 - 2 hoursAirSoftening, improved ductility
Quenching850 - 900 °C / 1562 - 1652 °F30 minutesOil or WaterHardening, increased strength
Tempering400 - 600 °C / 752 - 1112 °F1 hourAirReducing brittleness, improving toughness

Heat treatment processes significantly affect the microstructure and properties of Fatigue Proof Steel. Quenching increases hardness, while tempering reduces brittleness, making it suitable for high-stress applications.

Typical Applications and End Uses

Industry/SectorSpecific Application ExampleKey Steel Properties Utilized in this ApplicationReason for Selection
AutomotiveDrive shaftsHigh fatigue strength, toughnessDurability under cyclic loads
AerospaceLanding gear componentsHigh strength-to-weight ratioReliability in critical applications
MachineryGearsWear resistance, toughnessPerformance in dynamic environments

Other applications include:
- Construction: Structural components requiring high strength.
- Oil and Gas: Equipment exposed to cyclic loading and harsh environments.

Fatigue Proof Steel is chosen for these applications due to its ability to withstand high stresses and its overall durability, making it a preferred material in critical engineering sectors.

Important Considerations, Selection Criteria, and Further Insights

Feature/PropertyFatigue Proof SteelAISI 414042CrMo4Brief Pro/Con or Trade-off Note
Key Mechanical PropertyHigh fatigue strengthModerateModerateFatigue Proof Steel excels in cyclic loading
Key Corrosion AspectFairGoodGoodLess corrosion resistant than stainless steels
WeldabilityModerateGoodGoodRequires preheating to avoid cracking
MachinabilityModerateHighModerateAISI 1212 is easier to machine
FormabilityGoodModerateModerateSuitable for various forming processes
Approx. Relative CostModerateModerateHighCost-effective for high-performance applications
Typical AvailabilityCommonCommonCommonWidely available in various forms

When selecting Fatigue Proof Steel, considerations include its mechanical properties, cost-effectiveness, and availability. While it offers excellent performance in fatigue resistance, its corrosion resistance may limit its use in certain environments. Understanding the specific requirements of the application is crucial for optimal material selection.

In conclusion, Fatigue Proof Steel stands out as a reliable choice for applications requiring high strength and durability under cyclic loading. Its unique properties, combined with careful consideration of fabrication and environmental factors, make it a valuable material in modern engineering.

`; break; case 'square_bar': container.innerHTML = `

`; break; case 'flat_bar': container.innerHTML = `

`; break; case 'hexagon': container.innerHTML = `

`; break; case 'tube': container.innerHTML = `

`; break; case 'square_tube': container.innerHTML = `

`; break; case 'rect_tube': container.innerHTML = `

`; break; case 'plate': container.innerHTML = `

`; break; case 'angle': container.innerHTML = `

`; break; case 'channel': container.innerHTML = `

`; break; case 'i_beam': container.innerHTML = `

`; break; } } function calculateMetalWeight() { const shape = document.getElementById('shape').value; const density = parseFloat(document.getElementById('material').value); // g/cm³ const quantity = parseInt(document.getElementById('quantity').value); // Conversion factors const mmToCm = 0.1; // 1mm = 0.1cm const mToCm = 100; // 1m = 100cm const inchToCm = 2.54; // 1 inch = 2.54cm const ftToCm = 30.48; // 1 foot = 30.48cm // Which unit system are we using const isMetric = activeUnit === 'metric'; // Length conversion functions based on current unit system function convertSmallLength(value) { return isMetric ? value * mmToCm : value * inchToCm; } function convertLargeLength(value) { return isMetric ? value * mToCm : value * ftToCm; } let volume = 0; // cm³ let dimensions = ''; switch(shape) { case 'round_bar': const diameter = convertSmallLength(parseFloat(document.getElementById('diameter').value)); const roundLength = convertLargeLength(parseFloat(document.getElementById('length').value)); volume = Math.PI * Math.pow(diameter/2, 2) * roundLength; dimensions = `Ø${document.getElementById('diameter').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'square_bar': const side = convertSmallLength(parseFloat(document.getElementById('side').value)); const squareLength = convertLargeLength(parseFloat(document.getElementById('length').value)); volume = Math.pow(side, 2) * squareLength; dimensions = `${document.getElementById('side').value}${isMetric ? 'mm' : '"'} sq × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'flat_bar': const width = convertSmallLength(parseFloat(document.getElementById('width').value)); const thickness = convertSmallLength(parseFloat(document.getElementById('thickness').value)); const flatLength = convertLargeLength(parseFloat(document.getElementById('length').value)); volume = width * thickness * flatLength; dimensions = `${document.getElementById('width').value}×${document.getElementById('thickness').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'hexagon': const acrossFlats = convertSmallLength(parseFloat(document.getElementById('across_flats').value)); const hexLength = convertLargeLength(parseFloat(document.getElementById('length').value)); // Area of a regular hexagon = (3√3/2) × (side length)² // Side length from width across flats = width / (2 * cos(30°)) = width / √3 const sideLength = acrossFlats / Math.sqrt(3); const hexArea = (3 * Math.sqrt(3) / 2) * Math.pow(sideLength, 2); volume = hexArea * hexLength; dimensions = `${document.getElementById('across_flats').value}${isMetric ? 'mm' : '"'} AF × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'tube': const outerDiameter = convertSmallLength(parseFloat(document.getElementById('outer_diameter').value)); const innerDiameter = convertSmallLength(parseFloat(document.getElementById('inner_diameter').value)); const tubeLength = convertLargeLength(parseFloat(document.getElementById('length').value)); volume = Math.PI * (Math.pow(outerDiameter/2, 2) - Math.pow(innerDiameter/2, 2)) * tubeLength; dimensions = `Ø${document.getElementById('outer_diameter').value}×${document.getElementById('inner_diameter').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'square_tube': const outerSide = convertSmallLength(parseFloat(document.getElementById('outer_side').value)); const wallThickness = convertSmallLength(parseFloat(document.getElementById('wall_thickness').value)); const sqTubeLength = convertLargeLength(parseFloat(document.getElementById('length').value)); const innerSide = outerSide - (2 * wallThickness); volume = (Math.pow(outerSide, 2) - Math.pow(innerSide, 2)) * sqTubeLength; dimensions = `${document.getElementById('outer_side').value}×${document.getElementById('wall_thickness').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'rect_tube': const height = convertSmallLength(parseFloat(document.getElementById('height').value)); const rectWidth = convertSmallLength(parseFloat(document.getElementById('width').value)); const rectWallThickness = convertSmallLength(parseFloat(document.getElementById('wall_thickness').value)); const rectTubeLength = convertLargeLength(parseFloat(document.getElementById('length').value)); const innerHeight = height - (2 * rectWallThickness); const innerWidth = rectWidth - (2 * rectWallThickness); volume = (height * rectWidth - innerHeight * innerWidth) * rectTubeLength; dimensions = `${document.getElementById('height').value}×${document.getElementById('width').value}×${document.getElementById('wall_thickness').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'plate': const plateWidth = convertSmallLength(parseFloat(document.getElementById('width').value)); const plateLength = convertSmallLength(parseFloat(document.getElementById('plate_length').value)); const plateThickness = convertSmallLength(parseFloat(document.getElementById('thickness').value)); volume = plateWidth * plateLength * plateThickness; dimensions = `${document.getElementById('width').value}×${document.getElementById('plate_length').value}×${document.getElementById('thickness').value}${isMetric ? 'mm' : '"'}`; break; case 'angle': const angleHeight = convertSmallLength(parseFloat(document.getElementById('height').value)); const angleWidth = convertSmallLength(parseFloat(document.getElementById('width').value)); const angleThickness = convertSmallLength(parseFloat(document.getElementById('thickness').value)); const angleLength = convertLargeLength(parseFloat(document.getElementById('length').value)); volume = (angleHeight * angleThickness + angleWidth * angleThickness - Math.pow(angleThickness, 2)) * angleLength; dimensions = `${document.getElementById('height').value}×${document.getElementById('width').value}×${document.getElementById('thickness').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'channel': const channelHeight = convertSmallLength(parseFloat(document.getElementById('height').value)); const channelWidth = convertSmallLength(parseFloat(document.getElementById('width').value)); const channelThickness = convertSmallLength(parseFloat(document.getElementById('thickness').value)); const channelLength = convertLargeLength(parseFloat(document.getElementById('length').value)); volume = (channelHeight * channelThickness + 2 * (channelWidth - channelThickness) * channelThickness) * channelLength; dimensions = `${document.getElementById('height').value}×${document.getElementById('width').value}×${document.getElementById('thickness').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'i_beam': const beamHeight = convertSmallLength(parseFloat(document.getElementById('height').value)); const flangeWidth = convertSmallLength(parseFloat(document.getElementById('width').value)); const webThickness = convertSmallLength(parseFloat(document.getElementById('web_thickness').value)); const flangeThickness = convertSmallLength(parseFloat(document.getElementById('flange_thickness').value)); const beamLength = convertLargeLength(parseFloat(document.getElementById('length').value)); // Calculate cross-sectional area of I-beam const webHeight = beamHeight - (2 * flangeThickness); const webArea = webHeight * webThickness; const flangeArea = 2 * (flangeWidth * flangeThickness); volume = (webArea + flangeArea) * beamLength; dimensions = `H:${document.getElementById('height').value} W:${document.getElementById('width').value} WT:${document.getElementById('web_thickness').value} FT:${document.getElementById('flange_thickness').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; } // Weight = Volume × Density × Quantity const weight = volume * density * quantity / 1000; // Convert to kg // Display the result const resultElement = document.getElementById('steel-result'); resultElement.style.display = 'block'; if (isMetric) { resultElement.innerHTML = ` ${weight.toFixed(2)} kg per ${quantity > 1 ? quantity + ' pcs' : 'piece'}
${dimensions} `; } else { resultElement.innerHTML = ` ${(weight * 2.20462).toFixed(2)} lb per ${quantity > 1 ? quantity + ' pcs' : 'piece'}
${dimensions} `; } // Scroll into view if needed setTimeout(() => { resultElement.scrollIntoView({ behavior: 'smooth', block: 'nearest' }); }, 100); }

Back to blog

Newest posts

View all

  • Is 6061-t6 heat-treated stroner then steel fram...

    The Big Question: Is 6061-T6 Heat-Treated Aluminum a Stronger Bike Frame Material Than Steel? The short answer is: it's complicated. When we think about ifis 6061-t6 heat-treated stronger then steel...

    Is 6061-t6 heat-treated stroner then steel fram...

    The Big Question: Is 6061-T6 Heat-Treated Aluminum a Stronger Bike Frame Material Than Steel? The short answer is: it's complicated. When we think about ifis 6061-t6 heat-treated stronger then steel...

  • Master Aluminum Sheet Cutting: Essential Skill ...

    Yes, you absolutely can cut aluminum sheet with a skill saw. This guide will show you exactly how to do it safely. Many DIY enthusiasts ask about using circular saws...

    Master Aluminum Sheet Cutting: Essential Skill ...

    Yes, you absolutely can cut aluminum sheet with a skill saw. This guide will show you exactly how to do it safely. Many DIY enthusiasts ask about using circular saws...

  • Fatigue Proof Steel: Properties and Key Applications (1)

    6061 Aluminum vs 7075 Aluminum: The Definitive ...

    7075 aluminumis muchstrongerandharderthan 6061. This makes it perfect for high-stress uses where performance matters most.6061 aluminumis moreversatile,weldable, and usually costs less. Your best choice depends on what you need for...

    6061 Aluminum vs 7075 Aluminum: The Definitive ...

    7075 aluminumis muchstrongerandharderthan 6061. This makes it perfect for high-stress uses where performance matters most.6061 aluminumis moreversatile,weldable, and usually costs less. Your best choice depends on what you need for...

1 / of 3

View all

Fatigue Proof Steel: Properties and Key Applications (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Trent Wehner

Last Updated:

Views: 5565

Rating: 4.6 / 5 (56 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Trent Wehner

Birthday: 1993-03-14

Address: 872 Kevin Squares, New Codyville, AK 01785-0416

Phone: +18698800304764

Job: Senior Farming Developer

Hobby: Paintball, Calligraphy, Hunting, Flying disc, Lapidary, Rafting, Inline skating

Introduction: My name is Trent Wehner, I am a talented, brainy, zealous, light, funny, gleaming, attractive person who loves writing and wants to share my knowledge and understanding with you.