Table Of Content
Table Of Content
Fatigue Proof Steel is a specialized grade of steel designed to withstand cyclic loading and fatigue stresses, making it particularly valuable in applications where durability and reliability are paramount. This steel is classified as a medium-carbon alloy steel, typically containing alloying elements such as manganese, chromium, and nickel, which enhance its mechanical properties and fatigue resistance.
Comprehensive Overview
Fatigue Proof Steel is engineered to provide exceptional performance under repetitive loading conditions. Its primary alloying elements include:
- Manganese (Mn): Improves hardenability and tensile strength.
- Chromium (Cr): Enhances corrosion resistance and hardenability.
- Nickel (Ni): Increases toughness and impact resistance.
These elements contribute to the steel's ability to endure high-stress environments without succumbing to fatigue failure.
Key Characteristics:
- High fatigue strength
- Excellent toughness
- Good wear resistance
- Enhanced machinability
Advantages:
- Durability: Its resistance to fatigue makes it ideal for components subjected to cyclic loads, such as gears and shafts.
- Versatility: Suitable for various applications across industries, including automotive and aerospace.
- Cost-Effectiveness: Offers a balance of performance and affordability compared to higher alloy steels.
Limitations:
- Corrosion Resistance: While improved, it may not perform as well as stainless steels in highly corrosive environments.
- Weldability: Requires careful consideration during welding to avoid cracking.
Historically, Fatigue Proof Steel has been significant in the development of high-performance machinery and components, establishing itself as a reliable choice in engineering applications.
Alternative Names, Standards, and Equivalents
Standard Organization | Designation/Grade | Country/Region of Origin | Notes/Remarks |
---|---|---|---|
UNS | 1541 | USA | Closest equivalent to AISI 4140 |
AISI/SAE | 4140 | USA | Minor compositional differences |
ASTM | A829 | USA | Used for structural applications |
EN | 42CrMo4 | Europe | Similar properties, commonly used in Europe |
JIS | SCM440 | Japan | Comparable grade with slight differences in alloying elements |
The table above highlights various standards and equivalent grades. Notably, while AISI 4140 and 42CrMo4 share similar properties, the specific heat treatment processes and mechanical properties may vary, affecting their performance in specific applications.
Key Properties
Chemical Composition
Element (Symbol and Name) | Percentage Range (%) |
---|---|
C (Carbon) | 0.38 - 0.43 |
Mn (Manganese) | 0.60 - 0.90 |
Cr (Chromium) | 0.80 - 1.10 |
Ni (Nickel) | 0.25 - 0.50 |
Si (Silicon) | 0.15 - 0.40 |
P (Phosphorus) | ≤ 0.035 |
S (Sulfur) | ≤ 0.040 |
The primary role of key alloying elements in Fatigue Proof Steel includes:
- Carbon: Increases hardness and strength through heat treatment.
- Manganese: Enhances hardenability and improves wear resistance.
- Chromium: Provides corrosion resistance and contributes to overall toughness.
- Nickel: Improves ductility and impact strength, particularly at low temperatures.
Mechanical Properties
Property | Condition/Temper | Test Temperature | Typical Value/Range (Metric) | Typical Value/Range (Imperial) | Reference Standard for Test Method |
---|---|---|---|---|---|
Tensile Strength | Quenched & Tempered | Room Temp | 850 - 1000 MPa | 123 - 145 ksi | ASTM E8 |
Yield Strength (0.2% offset) | Quenched & Tempered | Room Temp | 600 - 800 MPa | 87 - 116 ksi | ASTM E8 |
Elongation | Quenched & Tempered | Room Temp | 15 - 20% | 15 - 20% | ASTM E8 |
Hardness (HRC) | Quenched & Tempered | Room Temp | 28 - 34 HRC | 28 - 34 HRC | ASTM E18 |
Impact Strength | Charpy V-notch | -20 °C | 30 - 50 J | 22 - 37 ft-lbf | ASTM E23 |
The combination of these mechanical properties makes Fatigue Proof Steel suitable for applications requiring high strength and toughness, particularly in dynamic loading conditions. Its high tensile and yield strengths, coupled with good ductility, allow it to perform reliably in structural applications.
Physical Properties
Property | Condition/Temperature | Value (Metric) | Value (Imperial) |
---|---|---|---|
Density | Room Temp | 7.85 g/cm³ | 0.284 lb/in³ |
Melting Point | - | 1425 - 1540 °C | 2600 - 2800 °F |
Thermal Conductivity | Room Temp | 45 W/m·K | 31 BTU·in/h·ft²·°F |
Specific Heat Capacity | Room Temp | 460 J/kg·K | 0.11 BTU/lb·°F |
Electrical Resistivity | Room Temp | 0.00065 Ω·m | 0.00038 Ω·in |
Key physical properties such as density and thermal conductivity are crucial in applications where weight and heat dissipation are factors. The relatively high density contributes to the material's strength, while its thermal conductivity ensures effective heat management in high-performance environments.
Corrosion Resistance
Corrosive Agent | Concentration (%) | Temperature (°C/°F) | Resistance Rating | Notes |
---|---|---|---|---|
Chlorides | 3-5 | 20-60 °C / 68-140 °F | Fair | Risk of pitting |
Sulfuric Acid | 10-20 | 25 °C / 77 °F | Poor | Not recommended |
Sodium Hydroxide | 5-10 | 20-60 °C / 68-140 °F | Fair | Susceptible to stress corrosion cracking |
Fatigue Proof Steel exhibits moderate resistance to various corrosive agents. While it performs adequately in environments with low chloride concentrations, it is susceptible to pitting and stress corrosion cracking in more aggressive conditions. Compared to stainless steels, such as AISI 304, which offer superior corrosion resistance, Fatigue Proof Steel is less suitable for applications in highly corrosive environments.
Heat Resistance
Property/Limit | Temperature (°C) | Temperature (°F) | Remarks |
---|---|---|---|
Max Continuous Service Temp | 300 °C | 572 °F | Suitable for prolonged exposure |
Max Intermittent Service Temp | 400 °C | 752 °F | Short-term exposure |
Scaling Temperature | 600 °C | 1112 °F | Risk of oxidation beyond this limit |
At elevated temperatures, Fatigue Proof Steel maintains its mechanical properties up to a certain limit. Beyond the maximum continuous service temperature, the risk of oxidation and loss of mechanical integrity increases. This steel is not recommended for applications involving prolonged exposure to high temperatures.
Fabrication Properties
Weldability
Welding Process | Recommended Filler Metal (AWS Classification) | Typical Shielding Gas/Flux | Notes |
---|---|---|---|
MIG | ER70S-6 | Argon + CO2 | Preheat recommended |
TIG | ER70S-2 | Argon | Requires post-weld heat treatment |
Fatigue Proof Steel can be welded using common processes like MIG and TIG. However, preheating is often necessary to prevent cracking, especially in thicker sections. Post-weld heat treatment can further enhance the properties of the weldment.
Machinability
Machining Parameter | Fatigue Proof Steel | AISI 1212 | Notes/Tips |
---|---|---|---|
Relative Machinability Index | 60 | 100 | Moderate machinability |
Typical Cutting Speed (Turning) | 40 m/min | 60 m/min | Use carbide tools for best results |
Fatigue Proof Steel exhibits moderate machinability. Optimal cutting speeds and tooling should be employed to achieve desired surface finishes and tolerances.
Formability
Fatigue Proof Steel demonstrates good formability, suitable for both cold and hot forming processes. However, care must be taken to avoid excessive work hardening, which can lead to cracking during bending operations. Recommended bend radii should be adhered to for optimal results.
Heat Treatment
Treatment Process | Temperature Range (°C/°F) | Typical Soaking Time | Cooling Method | Primary Purpose / Expected Result |
---|---|---|---|---|
Annealing | 600 - 700 °C / 1112 - 1292 °F | 1 - 2 hours | Air | Softening, improved ductility |
Quenching | 850 - 900 °C / 1562 - 1652 °F | 30 minutes | Oil or Water | Hardening, increased strength |
Tempering | 400 - 600 °C / 752 - 1112 °F | 1 hour | Air | Reducing brittleness, improving toughness |
Heat treatment processes significantly affect the microstructure and properties of Fatigue Proof Steel. Quenching increases hardness, while tempering reduces brittleness, making it suitable for high-stress applications.
Typical Applications and End Uses
Industry/Sector | Specific Application Example | Key Steel Properties Utilized in this Application | Reason for Selection |
---|---|---|---|
Automotive | Drive shafts | High fatigue strength, toughness | Durability under cyclic loads |
Aerospace | Landing gear components | High strength-to-weight ratio | Reliability in critical applications |
Machinery | Gears | Wear resistance, toughness | Performance in dynamic environments |
Other applications include:
- Construction: Structural components requiring high strength.
- Oil and Gas: Equipment exposed to cyclic loading and harsh environments.
Fatigue Proof Steel is chosen for these applications due to its ability to withstand high stresses and its overall durability, making it a preferred material in critical engineering sectors.
Important Considerations, Selection Criteria, and Further Insights
Feature/Property | Fatigue Proof Steel | AISI 4140 | 42CrMo4 | Brief Pro/Con or Trade-off Note |
---|---|---|---|---|
Key Mechanical Property | High fatigue strength | Moderate | Moderate | Fatigue Proof Steel excels in cyclic loading |
Key Corrosion Aspect | Fair | Good | Good | Less corrosion resistant than stainless steels |
Weldability | Moderate | Good | Good | Requires preheating to avoid cracking |
Machinability | Moderate | High | Moderate | AISI 1212 is easier to machine |
Formability | Good | Moderate | Moderate | Suitable for various forming processes |
Approx. Relative Cost | Moderate | Moderate | High | Cost-effective for high-performance applications |
Typical Availability | Common | Common | Common | Widely available in various forms |
When selecting Fatigue Proof Steel, considerations include its mechanical properties, cost-effectiveness, and availability. While it offers excellent performance in fatigue resistance, its corrosion resistance may limit its use in certain environments. Understanding the specific requirements of the application is crucial for optimal material selection.
In conclusion, Fatigue Proof Steel stands out as a reliable choice for applications requiring high strength and durability under cyclic loading. Its unique properties, combined with careful consideration of fabrication and environmental factors, make it a valuable material in modern engineering.
Metal Weight Calculator(2025)
`; break; case 'square_bar': container.innerHTML = `
`; break; case 'flat_bar': container.innerHTML = `
`; break; case 'hexagon': container.innerHTML = `
`; break; case 'tube': container.innerHTML = `
`; break; case 'square_tube': container.innerHTML = `
`; break; case 'rect_tube': container.innerHTML = `
`; break; case 'plate': container.innerHTML = `
`; break; case 'angle': container.innerHTML = `
`; break; case 'channel': container.innerHTML = `
`; break; case 'i_beam': container.innerHTML = `
`; break; } } function calculateMetalWeight() { const shape = document.getElementById('shape').value; const density = parseFloat(document.getElementById('material').value); // g/cm³ const quantity = parseInt(document.getElementById('quantity').value); // Conversion factors const mmToCm = 0.1; // 1mm = 0.1cm const mToCm = 100; // 1m = 100cm const inchToCm = 2.54; // 1 inch = 2.54cm const ftToCm = 30.48; // 1 foot = 30.48cm // Which unit system are we using const isMetric = activeUnit === 'metric'; // Length conversion functions based on current unit system function convertSmallLength(value) { return isMetric ? value * mmToCm : value * inchToCm; } function convertLargeLength(value) { return isMetric ? value * mToCm : value * ftToCm; } let volume = 0; // cm³ let dimensions = ''; switch(shape) { case 'round_bar': const diameter = convertSmallLength(parseFloat(document.getElementById('diameter').value)); const roundLength = convertLargeLength(parseFloat(document.getElementById('length').value)); volume = Math.PI * Math.pow(diameter/2, 2) * roundLength; dimensions = `Ø${document.getElementById('diameter').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'square_bar': const side = convertSmallLength(parseFloat(document.getElementById('side').value)); const squareLength = convertLargeLength(parseFloat(document.getElementById('length').value)); volume = Math.pow(side, 2) * squareLength; dimensions = `${document.getElementById('side').value}${isMetric ? 'mm' : '"'} sq × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'flat_bar': const width = convertSmallLength(parseFloat(document.getElementById('width').value)); const thickness = convertSmallLength(parseFloat(document.getElementById('thickness').value)); const flatLength = convertLargeLength(parseFloat(document.getElementById('length').value)); volume = width * thickness * flatLength; dimensions = `${document.getElementById('width').value}×${document.getElementById('thickness').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'hexagon': const acrossFlats = convertSmallLength(parseFloat(document.getElementById('across_flats').value)); const hexLength = convertLargeLength(parseFloat(document.getElementById('length').value)); // Area of a regular hexagon = (3√3/2) × (side length)² // Side length from width across flats = width / (2 * cos(30°)) = width / √3 const sideLength = acrossFlats / Math.sqrt(3); const hexArea = (3 * Math.sqrt(3) / 2) * Math.pow(sideLength, 2); volume = hexArea * hexLength; dimensions = `${document.getElementById('across_flats').value}${isMetric ? 'mm' : '"'} AF × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'tube': const outerDiameter = convertSmallLength(parseFloat(document.getElementById('outer_diameter').value)); const innerDiameter = convertSmallLength(parseFloat(document.getElementById('inner_diameter').value)); const tubeLength = convertLargeLength(parseFloat(document.getElementById('length').value)); volume = Math.PI * (Math.pow(outerDiameter/2, 2) - Math.pow(innerDiameter/2, 2)) * tubeLength; dimensions = `Ø${document.getElementById('outer_diameter').value}×${document.getElementById('inner_diameter').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'square_tube': const outerSide = convertSmallLength(parseFloat(document.getElementById('outer_side').value)); const wallThickness = convertSmallLength(parseFloat(document.getElementById('wall_thickness').value)); const sqTubeLength = convertLargeLength(parseFloat(document.getElementById('length').value)); const innerSide = outerSide - (2 * wallThickness); volume = (Math.pow(outerSide, 2) - Math.pow(innerSide, 2)) * sqTubeLength; dimensions = `${document.getElementById('outer_side').value}×${document.getElementById('wall_thickness').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'rect_tube': const height = convertSmallLength(parseFloat(document.getElementById('height').value)); const rectWidth = convertSmallLength(parseFloat(document.getElementById('width').value)); const rectWallThickness = convertSmallLength(parseFloat(document.getElementById('wall_thickness').value)); const rectTubeLength = convertLargeLength(parseFloat(document.getElementById('length').value)); const innerHeight = height - (2 * rectWallThickness); const innerWidth = rectWidth - (2 * rectWallThickness); volume = (height * rectWidth - innerHeight * innerWidth) * rectTubeLength; dimensions = `${document.getElementById('height').value}×${document.getElementById('width').value}×${document.getElementById('wall_thickness').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'plate': const plateWidth = convertSmallLength(parseFloat(document.getElementById('width').value)); const plateLength = convertSmallLength(parseFloat(document.getElementById('plate_length').value)); const plateThickness = convertSmallLength(parseFloat(document.getElementById('thickness').value)); volume = plateWidth * plateLength * plateThickness; dimensions = `${document.getElementById('width').value}×${document.getElementById('plate_length').value}×${document.getElementById('thickness').value}${isMetric ? 'mm' : '"'}`; break; case 'angle': const angleHeight = convertSmallLength(parseFloat(document.getElementById('height').value)); const angleWidth = convertSmallLength(parseFloat(document.getElementById('width').value)); const angleThickness = convertSmallLength(parseFloat(document.getElementById('thickness').value)); const angleLength = convertLargeLength(parseFloat(document.getElementById('length').value)); volume = (angleHeight * angleThickness + angleWidth * angleThickness - Math.pow(angleThickness, 2)) * angleLength; dimensions = `${document.getElementById('height').value}×${document.getElementById('width').value}×${document.getElementById('thickness').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'channel': const channelHeight = convertSmallLength(parseFloat(document.getElementById('height').value)); const channelWidth = convertSmallLength(parseFloat(document.getElementById('width').value)); const channelThickness = convertSmallLength(parseFloat(document.getElementById('thickness').value)); const channelLength = convertLargeLength(parseFloat(document.getElementById('length').value)); volume = (channelHeight * channelThickness + 2 * (channelWidth - channelThickness) * channelThickness) * channelLength; dimensions = `${document.getElementById('height').value}×${document.getElementById('width').value}×${document.getElementById('thickness').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; case 'i_beam': const beamHeight = convertSmallLength(parseFloat(document.getElementById('height').value)); const flangeWidth = convertSmallLength(parseFloat(document.getElementById('width').value)); const webThickness = convertSmallLength(parseFloat(document.getElementById('web_thickness').value)); const flangeThickness = convertSmallLength(parseFloat(document.getElementById('flange_thickness').value)); const beamLength = convertLargeLength(parseFloat(document.getElementById('length').value)); // Calculate cross-sectional area of I-beam const webHeight = beamHeight - (2 * flangeThickness); const webArea = webHeight * webThickness; const flangeArea = 2 * (flangeWidth * flangeThickness); volume = (webArea + flangeArea) * beamLength; dimensions = `H:${document.getElementById('height').value} W:${document.getElementById('width').value} WT:${document.getElementById('web_thickness').value} FT:${document.getElementById('flange_thickness').value}${isMetric ? 'mm' : '"'} × ${document.getElementById('length').value}${isMetric ? 'm' : "'"}`; break; } // Weight = Volume × Density × Quantity const weight = volume * density * quantity / 1000; // Convert to kg // Display the result const resultElement = document.getElementById('steel-result'); resultElement.style.display = 'block'; if (isMetric) { resultElement.innerHTML = ` ${weight.toFixed(2)} kg per ${quantity > 1 ? quantity + ' pcs' : 'piece'}
${dimensions} `; } else { resultElement.innerHTML = ` ${(weight * 2.20462).toFixed(2)} lb per ${quantity > 1 ? quantity + ' pcs' : 'piece'}
${dimensions} `; } // Scroll into view if needed setTimeout(() => { resultElement.scrollIntoView({ behavior: 'smooth', block: 'nearest' }); }, 100); }
Back to blog
Newest posts
View all
-
Is 6061-t6 heat-treated stroner then steel fram...
The Big Question: Is 6061-T6 Heat-Treated Aluminum a Stronger Bike Frame Material Than Steel? The short answer is: it's complicated. When we think about ifis 6061-t6 heat-treated stronger then steel...
Is 6061-t6 heat-treated stroner then steel fram...
The Big Question: Is 6061-T6 Heat-Treated Aluminum a Stronger Bike Frame Material Than Steel? The short answer is: it's complicated. When we think about ifis 6061-t6 heat-treated stronger then steel...
-
Master Aluminum Sheet Cutting: Essential Skill ...
Yes, you absolutely can cut aluminum sheet with a skill saw. This guide will show you exactly how to do it safely. Many DIY enthusiasts ask about using circular saws...
Master Aluminum Sheet Cutting: Essential Skill ...
Yes, you absolutely can cut aluminum sheet with a skill saw. This guide will show you exactly how to do it safely. Many DIY enthusiasts ask about using circular saws...
-
6061 Aluminum vs 7075 Aluminum: The Definitive ...
7075 aluminumis muchstrongerandharderthan 6061. This makes it perfect for high-stress uses where performance matters most.6061 aluminumis moreversatile,weldable, and usually costs less. Your best choice depends on what you need for...
6061 Aluminum vs 7075 Aluminum: The Definitive ...
7075 aluminumis muchstrongerandharderthan 6061. This makes it perfect for high-stress uses where performance matters most.6061 aluminumis moreversatile,weldable, and usually costs less. Your best choice depends on what you need for...
1 / of 3
View all